
CS 366: Programming Assignment 5

Division

Due: 30 Nov 2005, 11:59 AM

Division using a table As part of this assignment you are expected to write micro-code for
division instruction that uses a table in the background to perform the operation.

Instruction Meaning
DIV ri, rj, rk ri ← rj / rk

The division is done using table lookup. The table to be used for this assignment has 64 rows,
which means the number range of numbers possible for rj are 0 through 63 (64 in all). The table
has 2 columns for the divisors — one for 2 and the other for 4. This implies that the possible values
for rk are 2 and 4.

Number 2 4
000000 000000 000000
000001 000000 000000
000010 000001 000000
000011 000001 000000
000100 000010 000001
000101 000010 000001
000110 000011 000001
000111 000011 000001
001000 000100 000010

.
111111 011111 001111

The table has to be stored in memory and its starting address stored in one of the MythSim
registers. The division operation uses this starting address and the number rj to get to the row
and the value for rk (the column) to get the quotient.

Feel free to write any other basic instruction (like branch, add etc) that would be necessary to
complete the multiplier program described below.

Parity Generator As part of this assignment also write a program that generates odd-parity
bits for a set of numbers using the following algorithm:

X := starting address for data;
C := 0;
N := 01000000; /∗ binary ∗/

1

do {
M := read 8−bit integer from X;
for (i=0; i < 7; i++) {

if (M & N) C++;
N := N / 2;
}
M := M + M; /∗ M := M ∗ 2 ∗/
if !(C & 1)

M := M + 1;
write M back into location X;
X := X + 1;
} while (M != 1);

The memory organization for this assignment might look as shown below:

Sample code (contents of .mem file)
0: instruction
1: . . .

. . .
X-2: HALT
X-1: HALT
X : 00101010

X+1 : 00010010
X+2 : . . .
X+N : 00000000

The starting address for the data is X. The input numbers are 7-bit. The leading bit is a zero.
The output being written back into the same location as the input will be 8-bit with the parity
occupying bit-0 and the number in the first 7-bits. (This bit shift is done in the step M := M +
M, which is equivalent to multiplying by 2). The loop halts on input 0.

Turnin The command for the electronic turnin is:

turnin -c cs366 -p myth div 〈files〉

The hard-copy should contain

• a listing of your .ucode and .mem file (with some comments)

• a table with all the opcodes (you wrote) in the .ucode file and having a description for each
opcode similar in style to the table given above

• the status of your implementation (what works and what doesn’t)

This is due in class.

2

